By Topic

A probabilistic load flow method considering branch outages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Z. Hu ; Dept. of Electr. Power Eng., Xi'an Jiaotong Univ., China ; Xifan Wang

This paper proposes a probabilistic load flow method considering random branch outages as well as uncertainties of nodal power injections. Branch outages are simulated by fictitious power injections at the corresponding nodes. A unified procedure is given to deal with random branch outages, generating unit outages, and load uncertainties by their moments and cumulants. The variations of nodal voltages and line flows produced by normally and discretely distributed input variables are handled separately. The method proposed by Von Mises is employed to solve the discrete distribution part of each state and output variable. The final distribution of a desired variable is obtained by simply convoluting its continuous and discrete distribution part. Results of 24-bus IEEE Reliability Test System are analyzed and compared to those obtained by Monte Carlo simulation. A numerical test on a real power system shows the effectiveness of the proposed method.

Published in:

IEEE Transactions on Power Systems  (Volume:21 ,  Issue: 2 )