By Topic

On Array Failure Mitigation With Respect to Probability of Failure, Using Constant Excitation Coefficients and a Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Switched-beam antenna arrays (SBAs) are widely used in communications systems in order to increase system capacity and spectral efficiency. If an element fails during operation, a significant degradation of the array's performance is observed, even after redistribution of the array's excitation coefficients. Furthermore, redistribution of the excitation coefficients is not always possible. In this letter, a study on the effect of an element failure to an array's radiation patterns, with respect to the probability of failure, is performed. It is shown that mitigation of failure effects is possible if the possibility of failure is taken into account during early design stages. This is accomplished by using a modified genetic algorithm (GA). With the proposed methodology, mitigation is achieved even without the need to redistribute the array's excitation coefficients.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:5 ,  Issue: 1 )