By Topic

Simulation of tissue atrophy using a topology preserving transformation model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karacali, B. ; Sch. of Biomed. Eng., Sci., & Health Syst., Drexel Univ., Philadelphia, PA, USA ; Davatzikos, Christos

We propose a method to simulate atrophy and other similar volumetric change effects on medical images. Given a desired level of atrophy, we find a dense warping deformation that produces the corresponding levels of volumetric loss on the labeled tissue using an energy minimization strategy. Simulated results on a real brain image indicate that the method generates realistic images of tissue loss. The method does not make assumptions regarding the mechanics of tissue deformation, and provides a framework where a pre-specified pattern of atrophy can readily be simulated. Furthermore, it provides exact correspondences between images prior and posterior to the atrophy that can be used to evaluate provisional image registration and atrophy quantification algorithms.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 5 )