By Topic

Random coverage with guaranteed connectivity: joint scheduling for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chong Liu ; Dept. of Comput. Sci., Victoria Univ., BC ; Kui Wu ; Yang Xiao ; Bo Sun

Sensor scheduling plays a critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we deal with a challenging task: without accurate location information, how do we schedule sensor nodes to save energy and meet both constraints of sensing coverage and network connectivity? Our approach utilizes an integrated method that provides statistical sensing coverage and guaranteed network connectivity. We use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Our method is totally distributed, is able to dynamically adjust sensing coverage with guaranteed network connectivity, and is resilient to time asynchrony. We present analytical results to disclose the relationship among node density, scheduling parameters, coverage quality, detection probability, and detection delay. Analytical and simulation results demonstrate the effectiveness of our joint scheduling method

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 6 )