Cart (Loading....) | Create Account
Close category search window

On capacity of non-coherent Rayleigh fading MIMO channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Perera, R.R. ; Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT ; Nguyen, K. ; Pollock, T.S. ; Abhayapala, T.D.

This paper investigates the capacity of discrete time uncorrelated Rayleigh fading multiple input multiple output (MIMO) channels with no channel state information (CSI) at both the transmitter and the receiver. We prove that to achieve the capacity, the amplitude of the multiple input needs to have a discrete distribution with a finite number of mass points with one of them located at the origin. We show how to compute the capacity numerically in multi antenna configuration at any signal to noise ratio (SNR) with the discrete input using the Kuhn-Tucker condition for optimality. Furthermore, we show that at low SNR, the capacity with two mass points is optimal. Since the first mass point is necessarily located at the origin, we argue that at low SNR, on-off keying is optimal for any antenna number. As the number of receiver antennas increases, the maximum SNR at which two mass points are optimal decreases

Published in:

Communications Theory Workshop, 2006. Proceedings. 7th Australian

Date of Conference:

1-3 Feb. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.