By Topic

Prediction of thermal performance degradation of air-cooled fine-pitch fin array heat sinks due to fouling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Nabi ; Rafael Ltd., Haifa ; P. Rodgers ; A. Bar-Cohen

The fouling of air-cooled fine-pitch heat sinks by air born dust particles has become a major reliability concern for desktop and notebook personal computers, where significant thermal performance degradation can result. This paper investigates for the first time heat sink fouling mechanisms by both analytical and experimental analyses. The contribution of two fouling modes, namely accumulation of a thermally insulative dust coating on the fins within the heat sink channels, and blockage of the heat sink leading edge entrance, is quantified. It is found that the former fouling mode does not significantly increase heat sink thermal resistance. Instead, heat sink thermal performance degradation is essentially attributable to leading edge entrance blockage, which reduces the airflow rate through the heat sink by increasing pressure drop

Published in:

Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium

Date of Conference:

14-16 March 2006