By Topic

Automated detection of stable fracture points in computed tomography image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chowdhury, A.S. ; Dept. of Comput. Sci., Georgia Univ., Athens, GA ; Bhandarkar, S.M. ; Datta, G. ; Yu, J.C.

Automated detection of stable fracture points in a sequence of computed tomography (CT) images is a challenging task. In this paper, an innovative scheme for automatic fracture detection in CT images is presented. The input to the system is a sequence of CT image slices of a fractured human mandible. Techniques based on curvature scale-space theory and graph-based filtering (using prior anatomical knowledge) are used to first detect candidate fracture points in the individual CT slices. Subsequently, a Kalman filter incorporating a Bayesian perspective is employed for testing the consistency of the candidate fracture points across all the CT slices in a given sequence. For the purpose of checking statistical consistency, both 95% and 99% high posterior density (HPD) prediction intervals are constructed. A spatial consistency term is formulated for each candidate fracture point in terms of the number of slices in the CT image sequence, the number of times a fracture point detected in that sequence and the number of times it is found to be statistically consistent. Fracture points with spatial consistency terms close to unity are deemed to be stable fracture points for the CT image sequence under consideration

Published in:

Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on

Date of Conference:

6-9 April 2006