Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Joint detection-estimation of brain activity in fMRI using an autoregressive noise model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Makni, S. ; Service Hospitaller Frederic Joliot, CEA, Orsay ; Ciuciu, P. ; Idier, J. ; Poline, J.-B.

Different approaches have been considered so far to cope with the temporal correlation of fMRI data for brain activity detection. However, it has been reported that modeling this serial correlation has little influence on the estimate of the hemodynamic response function (HRF). In this paper, we examine this issue when performing a joint detection-estimation of brain activity in a given homogeneous region of interest (ROI). Following the work of Bullmore et al. (1996), we adopt a space-varying AR(1) temporal noise model and assess its influence, on both the estimation of the HRF and the detection of brain activity, using synthetic and real fMRI data. We show that this model yields a significant gain in detection specificity (lower false positive rate)

Published in:

Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on

Date of Conference:

6-9 April 2006