By Topic

Automated segmentation of white matter lesions in 3D brain MR images, using multivariate pattern classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhiqiang Lao ; Dept. of Radiol., Pennsylvania Univ., Philadelphia, PA ; Dinggang Shen ; Jawad, A. ; Karacali, B.
more authors

This paper presents a fully automatic white matter lesion (WML) segmentation method, based on local features determined by combining multiple MR acquisition protocols, including T1-weighted, T2-weighted, proton density (PD)-weighted and fluid attenuation inversion recovery (FLAIR) scans. Support vector machines (SVMs) are used to integrate features from these 4 acquisition types, thereby identifying nonlinear imaging profiles that distinguish and classify WMLs from normal brain tissue. Validation on a population of 45 diabetes patients with diverse spatial and size distribution of WMLs shows the robustness and accuracy of the proposed segmentation method, compared to the manual segmentation results from two experienced neuroradiologists

Published in:

Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on

Date of Conference:

6-9 April 2006