By Topic

An analytic potential model for symmetric and asymmetric DG MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaxin Lu ; Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA, USA ; Yuan Taur

This paper presents an analytic potential model for long-channel symmetric and asymmetric double-gate (DG) MOSFETs. The model is derived rigorously from the exact solution to Poisson's and current continuity equation without the charge-sheet approximation. By preserving the proper physics, volume inversion in the subthreshold region is well accounted for in the model. The resulting analytic expressions of the drain-current, terminal charges, and capacitances for long-channel DG MOSFETs are continuous in all operation regions, i.e., linear, saturation, and subthreshold, making it suitable for compact modeling. As no fitting parameters are invoked throughout the derivation, the model is physical and predictive. All parameter formulas are validated by two-dimensional numerical simulations with excellent agreement. The model has been implemented in Simulation Program with Integrated Circuit Emphasis version 3 (SPICE3), and the feasibility is demonstrated by the transient analysis of sample CMOS circuits.

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 5 )