By Topic

Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kufluoglu, H. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Alam, M.A.

Negative Bias Temperature Instability (NBTI)-induced degradation for ultra-scaled and future-generation MOSFETs is investigated. Numerical simulations based on Reaction-Diffusion framework are implemented. Geometric dependence of degradation arising from the transistor structure and scaling is incorporated into the model. The simulations are applied to narrow-width planar triple-gate and surround-gate MOSFET geometries to estimate the NBTI reliability under several scaling scenarios. Unless the operating voltages are optimized for specific geometry of transistor cross section, the results imply worsened NBTI reliability for the future-generation devices based on the geometric interpretation of the NBTI degradation. A time-efficient and straightforward analysis is developed to predict the degradation. This compact model confirms the numerical simulations.

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 5 )