By Topic

Processing aspects in the low-frequency noise of nMOSFETs on strained-silicon substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Simoen, E. ; Interuniversity Microelectron. Center, Leuven, Belgium ; Eneman, G. ; Verheyen, P. ; Loo, R.
more authors

The impact of different processing factors on the low-frequency (LF) noise of nMOSFETs fabricated in strained-silicon (SSi) substrates will be described. It is shown that the use of an SSi substrate can yield improved LF noise performance compared with standard Czochralski silicon material. This is demonstrated for both full-wafer and selective epitaxial SSi material. The lower 1/f noise points to an improved gate oxide quality, i.e., with a lower interface and bulk defect density, and is correlated with the low-field mobility or transconductance of the transistors. At the same time, it will be demonstrated that there exist defect-related LF noise mechanisms, which generally give rise to excess generation-recombination (GR) noise. Associated with this GR noise, a degradation of either the OFF-state leakage current or the mobility (transconductance) of the devices is observed. It is clear that noise is a sensitive parameter to local defectiveness and may be a useful tool for both materials' characterization and the analysis of processing-related device degradation mechanisms.

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 5 )