Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Capacity and power allocation for fading MIMO channels with channel estimation error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taesang Yoo ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Goldsmith, A.

In this correspondence, we investigate the effect of channel estimation error on the capacity of multiple-input-multiple-output (MIMO) fading channels. We study lower and upper bounds of mutual information under channel estimation error, and show that the two bounds are tight for Gaussian inputs. Assuming Gaussian inputs we also derive tight lower bounds of ergodic and outage capacities and optimal transmitter power allocation strategies that achieve the bounds under perfect feedback. For the ergodic capacity, the optimal strategy is a modified waterfilling over the spatial (antenna) and temporal (fading) domains. This strategy is close to optimum under small feedback delays, but when the delay is large, equal powers should be allocated across spatial dimensions. For the outage capacity, the optimal scheme is a spatial waterfilling and temporal truncated channel inversion. Numerical results show that some capacity gain is obtained by spatial power allocation. Temporal power adaptation, on the other hand, gives negligible gain in terms of ergodic capacity, but greatly enhances outage performance.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 5 )