By Topic

Algebraic lower bounds on the free distance of convolutional codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lally, Kristine ; Dept. of Math. & Stat., RMIT Univ., Melbourne, Vic.

A new module structure for convolutional codes is introduced and used to establish further links with quasi-cyclic and cyclic codes. The set of finite weight codewords of an (n,k) convolutional code over Fq is shown to be isomorphic to an Fq[x]-submodule of Fq n[x], where Fq n[x] is the ring of polynomials in indeterminate x over Fq n, an extension field of Fq. Such a module can then be associated with a quasi-cyclic code of index n and block length nL viewed as an Fq[x]-submodule of Fq n[x]/langxL-1rang, for any positive integer L. Using this new module approach algebraic lower bounds on the free distance of a convolutional code are derived which can be read directly from the choice of polynomial generators. Links between convolutional codes and cyclic codes over the field extension Fq n are also developed and Bose-Chaudhuri-Hocquenghem (BCH)-type results are easily established in this setting. Techniques to find the optimal choice of the parameter L are outlined

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 5 )