By Topic

Design and field-of-view calibration of 114-660-GHz optics of the Earth observing system microwave limb sounder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. E. Cofield ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; P. C. Stek

This paper describes the optics design and field-of-view (FOV) calibration for five radiometers covering 114-660 GHz which share a common antenna in the Microwave Limb Sounder instrument on the National Aeronautics and Space Administration's Aura satellite. Details of near-field pattern measurements are presented. Estimated systematic scaling uncertainties (3σ) on calibrated limb emissions, due to FOV calibration uncertainties, are below 0.4%. 3σ uncertainties in beamwidth and relative pointing of radiometer boresights are 0.006° and 0.003°, respectively. The uncertainty in modeled instrument response, due to the scan dependence of FOV patterns, is less than ±0.24 K equivalent black-body temperature. Refinements to the calibration using in-flight data are presented.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:44 ,  Issue: 5 )