Cart (Loading....) | Create Account
Close category search window
 

Numerical analysis of low-frequency electromagnetic scattering from axially symmetric bodies using an inductance matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sugahara, K. ; Adv. Technol. R&D Center, Mitsubishi Electr. Corp., Hyogo, Japan ; Yoda, K.

We have proposed a numerical method for calculating low-frequency electromagnetic scattering from axially symmetric conducting bodies with and without apertures. The surface of the perfectly conducting scatterer is modeled by a set of inductively coupled coil elements, and the current in each coil element is computed by solving an inductance matrix equation. A disadvantage of a conventional method for a scatterer with apertures is discussed. Scattering from various axially symmetric conducting bodies with or without apertures is calculated and the resulting fields are in good agreement with those obtained by finite-element method.

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.