By Topic

Modeling and analysis of crosstalk noise in coupled RLC interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agarwal, K. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Sylvester, D. ; Blaauw, D.

At current operating frequencies, inductive-coupling effects can be significant and should be included for accurate crosstalk-noise analysis. In this paper, an analytical framework to model crosstalk noise in coupled RLC interconnects is presented. The proposed model is based on transmission-line theory and captures high-frequency effects in on-chip interconnects. The new model is generic in nature and can be applied to asymmetric driver-and-line configurations for aggressor and victim wires. The model is compared against SPICE simulations and is shown to capture both the waveform shape and peak noise accurately. Over a large set of random test cases, the average error in noise-peak estimation is approximately 6.5%. A key feature of the new model is that its derivation and form enables physical insight into the total coupling-noise-waveform shape and its dependence on relevant physical-design parameters. Due to its simplicity and physical nature, the proposed model can be applied to investigate the impact of various physical-design optimizations (e.g., wire sizing and spacing, shield insertion) on total RLC coupled noise. The effectiveness of various existing noise-reduction techniques in the presence of mutual-inductance coupling is studied here. The obtained results indicate that common (capacitive) noise-avoidance techniques can behave quite differently when both capacitive and inductive coupling are considered together.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 5 )