By Topic

A high-efficiency fully digital synchronous buck converter power delivery system based on a finite-state machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woon Kang ; Nat. Semicond. Corp., Longmont, CO, USA ; Yong-Bin Kim ; Doyle, J.T.

A fully digital, self-adjusting, and high-efficiency power supply system has been developed based on a finite-state machine (FSM) control scheme. The system dynamically monitors circuit performance with a delay line and provides a substantially constant minimum supply voltage for digital processors to properly operate at a given frequency. In addition, the system adjusts the supply voltage to the required minimum under different process, voltage, and temperature and load conditions. The design issues of the fully digital power delivery system are discussed and addressed. This digital FSM scheme significantly reduces the complexity of control-loop implementation (<1800 gates) and power consumption (< 100 /spl mu/W at 1.2 V) compared to other approaches based on proportional-integral-differential control. The power delivery control system is fabricated in a 0.13-/spl mu/m CMOS process and its core die size is 160 /spl times/ 110 /spl mu/m/sup 2/.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 3 )