We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Face recognition using IPCA-ICA algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dagher, I. ; Dept. of Comput. Eng., Balamand Univ., Elkoura, Lebanon ; Nachar, R.

In this paper, a fast incremental principal non-Gaussian directions analysis algorithm, called IPCA-ICA, is introduced. This algorithm computes the principal components of a sequence of image vectors incrementally without estimating the covariance matrix (so covariance-free) and at the same time transforming these principal components to the independent directions that maximize the non-Gaussianity of the source. Two major techniques are used sequentially in a real-time fashion in order to obtain the most efficient and independent components that describe a whole set of human faces database. This procedure is done by merging the runs of two algorithms based on principal component analysis (PCA) and independent component analysis (ICA) running sequentially. This algorithm is applied to face recognition problem. Simulation results on different databases showed high average success rate of this algorithm compared to others.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 6 )