Cart (Loading....) | Create Account
Close category search window
 

From sample similarity to ensemble similarity: probabilistic distance measures in reproducing kernel Hilbert space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhou, S.K. ; Dept. of Integrated Data Syst., Siemens Corp. Res., Princeton, NJ, USA ; Chellappa, R.

This paper addresses the problem of characterizing ensemble similarity from sample similarity in a principled manner. Using a reproducing kernel as a characterization of sample similarity, we suggest a probabilistic distance measure in the reproducing kernel Hilbert space (RKHS) as the ensemble similarity. Assuming normality in the RKHS, we derive analytic expressions for probabilistic distance measures that are commonly used in many applications, such as Chernoff distance (or the Bhattacharyya distance as its special case), Kullback-Leibler divergence, etc. Since the reproducing kernel implicitly embeds a nonlinear mapping, our approach presents a new way to study these distances whose feasibility and efficiency is demonstrated using experiments with synthetic and real examples. Further, we extend the ensemble similarity to the reproducing kernel for ensemble and study the ensemble similarity for more general data representations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.