Cart (Loading....) | Create Account
Close category search window
 

MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Felemban, E. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Chang-Gun Lee ; Ekici, E.

In this paper, we present a novel packet delivery mechanism called Multi-Path and Multi-SPEED Routing Protocol (MMSPEED) for probabilistic QoS guarantee in wireless sensor networks. The QoS provisioning is performed in two quality domains, namely, timeliness and reliability. Multiple QoS levels are provided in the timeliness domain by guaranteeing multiple packet delivery speed options. In the reliability domain, various reliability requirements are supported by probabilistic multipath forwarding. These mechanisms for QoS provisioning are realized in a localized way without global network information by employing localized geographic packet forwarding augmented with dynamic compensation, which compensates for local decision inaccuracies as a packet travels towards its destination. This way, MMSPEED can guarantee end-to-end requirements in a localized way, which is desirable for scalability and adaptability to large scale dynamic sensor networks. Simulation results show that MMSPEED provides QoS differentiation in both reliability and timeliness domains and, as a result, significantly improves the effective capacity of a sensor network in terms of number of flows that meet both reliability and timeliness requirements up to 50 percent (12 flows versus 18 flows).

Published in:

Mobile Computing, IEEE Transactions on  (Volume:5 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.