Cart (Loading....) | Create Account
Close category search window
 

Cluster overlay broadcast (COB): MANET routing with complexity polynomial in source-destination distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ritchie, L. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Yang, H.S. ; Richa, A.W. ; Reisslein, M.

Routing algorithms with time and message complexities that are provably low and independent of the total number of nodes in the network are essential for the design and operation of very large scale wireless mobile ad hoc networks (MANETs). In this paper, we develop and analyze Cluster Overlay Broadcast (COB), a low-complexity routing algorithm for MANETs. COB runs on top of a one-hop cluster cover of the network, which can be created and maintained using, for instance, the Least Cluster Change (LCC) algorithm. We formally prove that the LCC algorithm maintains a cluster cover with a constant density of cluster leaders with minimal update cost. COB discovers routes by flooding (broadcasting) route requests through the network of cluster leaders with a doubling radius technique. Building on the constant density property of the network of cluster leaders, we formally prove that, if there exists a route from a source to a destination node with a minimum hop count of A, then COB discovers a route with at most O(Δ) hops from the source to the destination node in at most O(Δ) time and by sending at Most O(Δ2) messages. We prove this result for arbitrary node distributions and mobility patterns and also show that COB adapts asymptotically optimally to the mobility of the nodes. In our simulation experiments, we examine the network layer performance of COB, compare it with Dynamic Source Routing, and investigate the impact of the MAC layer on COB routing.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:5 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.