Cart (Loading....) | Create Account
Close category search window
 

Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

This paper focuses on the electrical insulation properties of a newly prepared composite material by nano- and micro-filler mixture. Nano- and micro-filler mixture composites were made by dispersing nano-scale layered silicate fillers and micro-scale silica fillers in epoxy resin. To investigate the effects of nano- and micro-filler mixture, the thermal expansion coefficient and insulation breakdown properties by a needle-plate electrode method were measured for the filler mixture composite and the conventional filled epoxy. The filler mixture composite had almost the same thermal expansion coefficient as the conventional filled epoxy. In a continuous voltage rising test, the filler mixture composite had 7% higher insulation breakdown strength than the conventional filled epoxy. Moreover, under constant AC voltage (10 kV at 1 kHz), the filler mixture composite had an insulation breakdown time of more than 20,000 minutes whereas the conventional filled epoxy had a breakdown time of 830 minutes. Electron microscope observation showed that the area surrounded by dispersed micro-scale silica fillers were also filled with the nano-scale layered silicate fillers. Furthermore, the estimate of spacing between the fillers and the filler/epoxy interface area showed a more densely-packed structure of the filler mixture composite than the conventional filled epoxy. The morphological feature of the filler mixture composite seems to improve its insulation breakdown strength and time.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.