Cart (Loading....) | Create Account
Close category search window
 

A VLSI optimised parallel tree search for MIMO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Knagge, G. ; Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., NSW ; Woodward, G. ; Weller, Steven R. ; Ninness, B.

Multiple input-multiple output (MIMO) systems are of great interest due to their ability to significantly increase the capacity of wireless communications systems, but for these to be useful they must also be practical for implementation in very large scale integrated (VLSI) circuits. A particularly difficult part of these systems is the detector, where the maximum-likelihood (ML) solution cannot be directly implemented due to its exponential complexity. Lattice decoders, such as the sphere search, exhibit near-ML performance with reduced complexity, but their application is still limited by computational requirements. Here, a number of optimisations are presented, designed to reduce the computational cost of the sphere search in the context of VLSI implementation for MIMO applications. We also propose parallel implementation strategies for such a detector, suitable for implementation in VLSI. This is then combined with a single-pass tree search approach and it is demonstrated that it can be designed so that the error-rate performance is not significantly impaired

Published in:

Communications Theory Workshop, 2005. Proceedings. 6th Australian

Date of Conference:

2-4 Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.