Cart (Loading....) | Create Account
Close category search window

Semantic event detection via multimodal data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Min Chen ; Sch. of Comput. & Inc. Sci., Florida Int. Univ., Miami, FL ; Shu-Ching Chen ; Mei-Ling Shyu ; Wickramaratna, K.

This paper presents a novel framework for video event detection. The core of the framework is an advanced temporal analysis and multimodal data mining method that consists of three major components: low-level feature extraction, temporal pattern analysis, and multimodal data mining. One of the unique characteristics of this framework is that it offers strong generality and extensibility with the capability of exploring representative event patterns with little human interference. The framework is presented with its application to the detection of the soccer goal events over a large collection of soccer video data with various production styles

Published in:

Signal Processing Magazine, IEEE  (Volume:23 ,  Issue: 2 )

Date of Publication:

March 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.