Cart (Loading....) | Create Account
Close category search window

Fault detection and isolation using concatenated wavelet transform variances and discriminant analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gonzalez, G.D. ; Electr. Eng. Dept., Univ. of Chile, Santiago, Chile ; Paut, R. ; Cipriano, A. ; Miranda, D.R.
more authors

A method for fault detection and isolation is developed using the concatenated variances of the continuous wavelet transform (CWT) of plant outputs. These concatenated variances are projected onto the principal component space corresponding to the covariance matrix of the concatenated variances. Fisher and quadratic discriminant analyses are then performed in this space to classify the concatenated sample CWT variances of outputs in a given time window. The sample variance is a variance estimator obtained by taking the displacement average of the squared wavelet transforms of the current outputs. This method provides an alternative to the multimodel approach used for fault detection and identification, especially when system inputs are unmeasured stochastic processes, as is assumed in the case of the mechanical system example. The performance of the method is assessed using matrices having the percentage of correct condition identification in the diagonal and the percentages misclassified conditions in the off-diagonal elements. Considerable performance improvements may be obtained due to concatenation-when two or more outputs are available-and to discriminant analysis, as compared with other wavelet variance methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.