Cart (Loading....) | Create Account
Close category search window
 

Filter Bank precoding for FIR equalization in high-rate MIMO communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishna, A.V. ; Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India ; Hari, K.V.S.

In this paper, the problem of designing finite-impulse-response (FIR) equalizers for multiple-input multiple-output (MIMO) FIR channels is considered. It is shown that an arbitrary MIMO frequency-selective channel can be rendered FIR equalizable by a suitable filter bank (FB) precoding operation that introduces redundancy at the transmitter. The expression for the minimum redundancy required to ensure FIR invertibility is derived. The analysis is extended to the case of MIMO multicarrier modulation. Optimum zero-forcing (ZF) and minimum mean-squared error (MMSE) solutions for the FIR equalizer are derived. Simulation results are provided to demonstrate that the proposed scheme achieves better performance than the block-processing methods while supporting a higher data rate.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.