By Topic

Multichannel acquisition system for high-resolution position-sensing silicon drift detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Castoldi, A. ; Dipt. di Ingegneria Nucleare, Politecnico di Milano, Italy ; Galimberti, A.

We present the design guidelines and the experimental characterization of a multichannel acquisition system that measures the amplitude and the time-of-arrival of the signal pulses delivered by position-sensing silicon drift detectors (SDDs). The readout system has been equally developed for multichannel SDDs and for controlled drift detectors (CDDs) intended for spectroscopic imaging of X-rays or charged particles. The analog section includes a very large scale integration (VLSI) front-end preamplifier and bias current generator for the on-chip JFET follower while the digital back-end is realized with 12 bit 100 MS/s 8-channel analog-to-digital converter (ADC) versa modular eurocard (VME) boards. Amplitude and time are measured by digitally processing each unipolar shaped pulse also in presence of a superposed background waveform. The VME modularity allows the expansion of the readout system up to 128 channels per VME crate. The overall linearity error is better than 0.05%, and the mean noise over all channels, expressed in terms of equivalent noise charge, is about 4 electrons r.m.s. The measured time resolution is 0.6 ns r.m.s. at a signal charge of 5000 electrons, corresponding to a position resolution of 2-3 μm r.m.s. along the drift direction. The developed readout system has been used for X-ray imaging tests with CDDs at Sincrotrone Trieste.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:53 ,  Issue: 2 )