By Topic

Robust ego-motion estimation and 3-D model refinement using surface parallax

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Agrawal ; Center for Autom. Res., Univ. of Maryland, College Park, MD, USA ; R. Chellappa

We present an iterative algorithm for robustly estimating the ego-motion and refining and updating a coarse depth map using parametric surface parallax models and brightness derivatives extracted from an image pair. Given a coarse depth map acquired by a range-finder or extracted from a digital elevation map (DEM), ego-motion is estimated by combining a global ego-motion constraint and a local brightness constancy constraint. Using the estimated camera motion and the available depth estimate, motion of the three-dimensional (3-D) points is compensated. We utilize the fact that the resulting surface parallax field is an epipolar field, and knowing its direction from the previous motion estimates, estimate its magnitude and use it to refine the depth map estimate. The parallax magnitude is estimated using a constant parallax model (CPM) which assumes a smooth parallax field and a depth based parallax model (DBPM), which models the parallax magnitude using the given depth map. We obtain confidence measures for determining the accuracy of the estimated depth values which are used to remove regions with potentially incorrect depth estimates for robustly estimating ego-motion in subsequent iterations. Experimental results using both synthetic and real data (both indoor and outdoor sequences) illustrate the effectiveness of the proposed algorithm.

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 5 )