By Topic

Performance characterization of the dynamic programming obstacle detection algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gandhi, T. ; Comput. Vision & Robotics Res. Lab., Univ. California, San Diego, CA, USA ; Mau-Tsuen Yang ; Kasturi, R. ; Camps, O.I.
more authors

A computer vision-based system using images from an airborne aircraft can increase flight safety by aiding the pilot to detect obstacles in the flight path so as to avoid mid-air collisions. Such a system fits naturally with the development of an external vision system proposed by NASA for use in high-speed civil transport aircraft with limited cockpit visibility. The detection techniques should provide high detection probability for obstacles that can vary from subpixels to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. For this purpose, we have implemented a number of algorithms to detect airborne obstacles using image sequences obtained from a camera mounted on an aircraft. This paper describes the methodology used for characterizing the performance of the dynamic programming obstacle detection algorithm and its special cases. The experimental results were obtained using several types of image sequences, with simulated and real backgrounds. The approximate performance of the algorithm is also theoretically derived using principles of statistical analysis in terms of the signal-to-noise ration (SNR) required for the probabilities of false alarms and misdetections to be lower than prespecified values. The theoretical and experimental performance are compared in terms of the required SNR.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )