By Topic

A binary level set model and some applications to Mumford-Shah image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lie, J. ; Dept. of Math., Univ. of Bergen, Johannes Brunsgate, Norway ; Lysaker, M. ; Xue-Cheng Tai

In this paper, we propose a PDE-based level set method. Traditionally, interfaces are represented by the zero level set of continuous level set functions. Instead, we let the interfaces be represented by discontinuities of piecewise constant level set functions. Each level set function can at convergence only take two values, i.e., it can only be 1 or -1; thus, our method is related to phase-field methods. Some of the properties of standard level set methods are preserved in the proposed method, while others are not. Using this new method for interface problems, we need to minimize a smooth convex functional under a quadratic constraint. The level set functions are discontinuous at convergence, but the minimization functional is smooth. We show numerical results using the method for segmentation of digital images.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )