By Topic

Fingerprint registration by maximization of mutual information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lifeng Liu ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta., Canada ; Tianzi Jiang ; Jianwei Yang ; Chaozhe Zhu

Fingerprint registration is a critical step in fingerprint matching. Although a variety of registration alignment algorithms have been proposed, accurate fingerprint registration remains an unresolved problem. We propose a new algorithm for fingerprint registration using orientation field. This algorithm finds the correct alignment by maximization of mutual information between features extracted from orientation fields of template and input fingerprint images. Orientation field, representing the flow of ridges, is a relatively stable global feature of fingerprint images. This method uses the statistics and distribution of global feature of fingerprint images so that it is robust to image quality and local changes in images. The primary characteristic of this method is that it uses this stable global feature to align fingerprints, and that its behavior may resemble the way humans compare fingerprints. Experimental results show that the occurrence of misalignment is dramatically reduced and that registration accuracy is greatly improved at the same time, leading to enhanced matching performance.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )