Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Invariance properties of Gabor filter-based features-overview and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kamarainen, J.-K. ; Dept. of Inf. Technol., Lappeenranta Univ. of Technol., Finland ; Kyrki, V. ; Kälviäinen, H.

For almost three decades the use of features based on Gabor filters has been promoted for their useful properties in image processing. The most important properties are related to invariance to illumination, rotation, scale, and translation. These properties are based on the fact that they are all parameters of Gabor filters themselves. This is especially useful in feature extraction, where Gabor filters have succeeded in many applications, from texture analysis to iris and face recognition. This study provides an overview of Gabor filters in image processing, a short literature survey of the most significant results, and establishes invariance properties and restrictions to the use of Gabor filters in feature extraction. Results are demonstrated by application examples.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )