Cart (Loading....) | Create Account
Close category search window
 

Wavelet-domain approximation and compression of piecewise smooth images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wakin, M.B. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Romberg, J.K. ; Hyeokho Choi ; Baraniuk, R.G.

The wavelet transform provides a sparse representation for smooth images, enabling efficient approximation and compression using techniques such as zerotrees. Unfortunately, this sparsity does not extend to piecewise smooth images, where edge discontinuities separating smooth regions persist along smooth contours. This lack of sparsity hampers the efficiency of wavelet-based approximation and compression. On the class of images containing smooth C2 regions separated by edges along smooth C2 contours, for example, the asymptotic rate-distortion (R-D) performance of zerotree-based wavelet coding is limited to D(R) ≲1/R, well below the optimal rate of 1/R2. In this paper, we develop a geometric modeling framework for wavelets that addresses this shortcoming. The framework can be interpreted either as 1) an extension to the "zerotree model" for wavelet coefficients that explicitly accounts for edge structure at fine scales, or as 2) a new atomic representation that synthesizes images using a sparse combination of wavelets and wedgeprints-anisotropic atoms that are adapted to edge singularities. Our approach enables a new type of quadtree pruning for piecewise smooth images, using zerotrees in uniformly smooth regions and wedgeprints in regions containing geometry. Using this framework, we develop a prototype image coder that has near-optimal asymptotic R-D performance D(R)≲(logR)2/R2 for piecewise smooth C2/C2 images. In addition, we extend the algorithm to compress natural images, exploring the practical problems that arise and attaining promising results in terms of mean-square error and visual quality.

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.