By Topic

Aggregate a posteriori linear regression adaptation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jen-Tzung Chien ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Huang, Chih-Hsien

We present a new discriminative linear regression adaptation algorithm for hidden Markov model (HMM) based speech recognition. The cluster-dependent regression matrices are estimated from speaker-specific adaptation data through maximizing the aggregate a posteriori probability, which can be expressed in a form of classification error function adopting the logarithm of posterior distribution as the discriminant function. Accordingly, the aggregate a posteriori linear regression (AAPLR) is developed for discriminative adaptation where the classification errors of adaptation data are minimized. Because the prior distribution of regression matrix is involved, AAPLR is geared with the Bayesian learning capability. We demonstrate that the difference between AAPLR discriminative adaptation and maximum a posteriori linear regression (MAPLR) adaptation is due to the treatment of the evidence. Different from minimum classification error linear regression (MCELR), AAPLR has closed-form solution to fulfil rapid adaptation. Experimental results reveal that AAPLR speaker adaptation does improve speech recognition performance with moderate computational cost compared to maximum likelihood linear regression (MLLR), MAPLR, MCELR and conditional maximum likelihood linear regression (CMLLR). These results are verified for supervised adaptation as well as unsupervised adaptation for different numbers of adaptation data.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 3 )