Cart (Loading....) | Create Account
Close category search window
 

Efficient location area planning for personal communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bejerano, Y. ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Smith, A. ; Naor, J. ; Immorlica, N.

A central problem in personal communication systems is to optimize bandwidth usage, while providing Quality of Service (QoS) guarantees to mobile users. Network mobility management, and in particular, location management, consumes a significant portion of bandwidth, which is a necessary overhead for supporting mobile users. We focus our efforts on minimizing this overhead. Unlike previous works, we concentrate on optimizing existing schemes, and so the algorithms we present are easily incorporated into current networks. We present the first polynomial time approximation algorithms for minimum bandwidth location management. In planar graphs, our algorithm provably generates a solution that uses no more than a constant factor more bandwidth than the optimal solution. In general graphs, our algorithm provably generates a solution that uses just a factor O (log n) more bandwidth than optimal where n is the number of base stations in the network. We show that, in practice, our algorithm produces near-optimal results and outperforms other schemes that are described in the literature. For the important case of the line graph, we present a polynomial-time optimal algorithm. Finally, we illustrate that our algorithm can also be used for optimizing the handoff mechanism.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.