By Topic

Longest prefix matching using bloom filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Dharmapurikar ; Dept. of Comput. Sci. & Eng., Washington Univ., St. Louis, MO, USA ; P. Krishnamurthy ; D. E. Taylor

We introduce the first algorithm that we are aware of to employ Bloom filters for longest prefix matching (LPM). The algorithm performs parallel queries on Bloom filters, an efficient data structure for membership queries, in order to determine address prefix membership in sets of prefixes sorted by prefix length. We show that use of this algorithm for Internet Protocol (IP) routing lookups results in a search engine providing better performance and scalability than TCAM-based approaches. The key feature of our technique is that the performance, as determined by the number of dependent memory accesses per lookup, can be held constant for longer address lengths or additional unique address prefix lengths in the forwarding table given that memory resources scale linearly with the number of prefixes in the forwarding table. Our approach is equally attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addresses, four times longer than IPv4. We present a basic version of our approach along with optimizations leveraging previous advances in LPM algorithms. We also report results of performance simulations of our system using snapshots of IPv4 BGP tables and extend the results to IPv6. Using less than 2 Mb of embedded RAM and a commodity SRAM device, our technique achieves average performance of one hash probe per lookup and a worst case of two hash probes and one array access per lookup.

Published in:

IEEE/ACM Transactions on Networking  (Volume:14 ,  Issue: 2 )