Cart (Loading....) | Create Account
Close category search window
 

A new TCP for persistent packet reordering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bohacek, S. ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; Hespanha, J.P. ; Junsoo Lee ; Chansook Lim
more authors

Most standard implementations of TCP perform poorly when packets are reordered. In this paper, we propose a new version of TCP that maintains high throughput when reordering occurs and yet, when packet reordering does not occur, is friendly to other versions of TCP. The proposed TCP variant, or TCP-PR, does not rely on duplicate acknowledgments to detect a packet loss. Instead, timers are maintained to keep track of how long ago a packet was transmitted. In case the corresponding acknowledgment has not yet arrived and the elapsed time since the packet was sent is larger than a given threshold, the packet is assumed lost. Because TCP-PR does not rely on duplicate acknowledgments, packet reordering (including out-or-order acknowledgments) has no effect on TCP-PR's performance. Through extensive simulations, we show that TCP-PR performs consistently better than existing mechanisms that try to make TCP more robust to packet reordering. In the case that packets are not reordered, we verify that TCP-PR maintains the same throughput as typical implementations of TCP (specifically, TCP-SACK) and shares network resources fairly. Furthermore, TCP-PR only requires changes to the TCP sender side making it easier to deploy.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 2 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.