By Topic

Feature fusion to improve road network extraction in high-resolution SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
G. Lisini ; Dipt. di Elettronica, Pavia Univ., Italy ; C. Tison ; F. Tupin ; P. Gamba

This letter aims at the extraction of roads and road networks from high-resolution synthetic aperture radar data. Classical methods based on line detection do not use all the information available; indeed, in high-resolution data, roads are large enough to be considered as regions and can be characterized also by their statistics. This property can be used in a classification scheme. Therefore, this letter presents a road extraction method which is based on the fusion of classification (statistical information) and line detection (structural information). This fusion is done at the feature level, which helps to improve both the level of likelihood and the number of the extracted roads. The proposed approach is tested with two classification methods and one line extractor. Results on two different datasets are discussed.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:3 ,  Issue: 2 )