By Topic

Complete stability of cellular neural networks with time-varying delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhigang Zeng ; Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, China ; Jun Wang

In this paper, the complete stability of cellular neural networks with time-varying delays is analyzed using the induction method and the contraction mapping principle. Delay-dependent and delay-independent conditions are obtained for locally stable equilibrium points to be located anywhere, which differ from the existing results on complete stability where the existence of equilibrium points in the saturation region is necessary for complete stability and locally stable equilibrium points can be in the saturation region only. In addition, some existing stability results in the literature are special cases of a new result herein. Simulation results are also discussed by use of two illustrative examples.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 4 )