By Topic

Ultra-wideband impulse radio systems with multiple pulse types

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gezici, S. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Sahinoglu, Z. ; Kobayashi, Hisashi ; Poor, H.V.

In an ultra-wideband (UWB) impulse radio (IR) system, a number of pulses, each transmitted in an interval called a "frame," is employed to represent one information symbol. Conventionally, a single type of UWB pulse is used in all frames of all users. In this paper, IR systems with multiple types of UWB pulses are considered, where different types of pulses can be used in different frames by different users. Both stored-reference (SR) and transmitted-reference (TR) systems are considered. First, the spectral properties of a multipulse IR system with polarity randomization is investigated. It is shown that the average power spectral density is the average of the spectral contents of different pulse shapes. Then, approximate closed-form expressions for the bit-error probability of a multipulse SR-IR system are derived for Rake receivers in asynchronous multiuser environments. The effects of both interframe interference (IFI) and multiple-access interference (MAI) are analyzed. The theoretical and simulation results indicate that SR-IR systems that are more robust against IFI and MAI than a "conventional" SR-IR system can be designed with multiple types of ultra-wideband pulses. Finally, extensions to multipulse TR-IR systems are briefly described.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 4 )