By Topic

Coated long-period fiber gratings as high-sensitivity optochemical sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Cusano, A. ; Eng. Dept., Univ. of Sannio, Benevento, Italy ; Iadicicco, A. ; Pilla, P. ; Contessa, L.
more authors

In this paper, the numerical and the experimental analyses of coated long-period fiber gratings (LPFGs) as a high-sensitivity optochemical sensor are presented. The proposed structure relies on LPFGs coated with nanoscale high refractive index chemical-sensitive overlays. The deposition of overlays with refractive index higher than the cladding one leads to a modification of the cladding-mode distribution. If the overlay features are properly chosen, a strong field enhancement within the overlay occurs, leading to an excellent sensitivity of the cladding-mode distribution to the coating properties. The effects of overlay thickness and cladding-mode order on sensor performances have been numerically and experimentally investigated. In order to provide a high-sensitivity and species-specific optochemical sensor, this mechanism has been proved with nanoscale overlays of syndiotactic polystyrene (sPS) in the nanoporous crystalline δ form. The sensitive material has been chosen in light of its selectivity and high sorption properties towards chlorinated and aromatic compounds. Sensor probes were prepared by using dip-coating technique and an adequate procedure to obtain the δ-form sPS. Experimental demonstration of the sensor capability to perform subparts-per-million detection of chloroform in water at room temperature is also reported.

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 4 )