By Topic

Passive Bilateral Teleoperation With Constant Time Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongjun Lee ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL ; Spong, M.W.

We propose a novel control framework for bilateral teleoperation of a pair of multi-degree-of-freedom nonlinear robotic systems under constant communication delays. The proposed framework uses the simple proportional-derivative control, i.e., the master and slave robots are directly connected via spring and damper over the delayed communication channels. Using the controller passivity concept, the Lyapunov-Krasovskii technique, and Parseval's identity, we can passify the combination of the delayed communication and control blocks altogether robustly, as long as the delays are finite constants and an upper bound for the round-trip delay is known. Having explicit position feedback through the delayed P-action, the proposed framework enforces master-slave position coordination, which is often compromised in the conventional scattering-based teleoperation. The proposed control framework provides humans with extended physiological proprioception, so that s/he can affect and sense the remote slave environments mainly relying on her/his musculoskeletal systems. Simulation and experiments are performed to validate and highlight properties of the proposed control framework

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 2 )