By Topic

Development of microfluidic device for electrical/physical characterization of single cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Y. H. Cho ; Inst. of Ind. Sci., Univ. of Tokyo, Japan ; T. Yamamoto ; Y. Sakai ; T. Fujii
more authors

A novel device with microchannels for flowing cells and twin microcantilever arrays for measuring the electrical impedance of a single cell is proposed. The fabrication process is demonstrated and the twin microcantilever arrays have been successfully fabricated. In our research, we measured the electrical impedance for normal and abnormal red blood cell over the frequency range from 1 Hz to 10 MHz. From the electrical impedance experiment of normal and abnormal red blood cell, it was examined that the electrical impedance between normal and abnormal red blood cells was significantly different in magnitude and phase shift. In this paper, we show that the normal cell can be taken apart from the abnormal cell by electrical impedance measurement. Therefore, it is expected that the applicability of this technology can be used in cellular studies such as cell sorting, counting or membrane biophysical characterization.

Published in:

Journal of Microelectromechanical Systems  (Volume:15 ,  Issue: 2 )