By Topic

Localization and follow-the-leader control of a heterogeneous group of mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiangyang Huang ; Dept. of Mech. Eng., Univ. of Nebraska-Lincoln, Lincoln, USA ; S. M. Farritor ; A. Qadi ; S. Goddard

This paper investigates the control and localization of a heterogeneous (e.g., different sensing, mechanical, computational capabilities) group of mobile robots. The group considered here has several inexpensive sensor-limited and computationally limited robots, which follow a leader robot in a desired formation over long distances. This situation is similar to a search, demining, or planetary exploration situation where there are several deployable/disposable robots led by a more sophisticated leader. Specifically, the robots in this paper are designed for highway safety applications where they automatically deploy and maneuver safety barrels commonly used to control traffic in highway work zones. Complex sensing and computation are performed by the leader, while the followers perform simple operations under the leader's guidance. This architecture allows followers to be simple, inexpensive, and have minimal sensors. Theoretical and statistical analysis of a tracking-based localization method is provided. A simple follow-the-leader control method is also presented, including a method for changing follower's configuration. Experimental results of localization and follow-the-leader formation-motion are included.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:11 ,  Issue: 2 )