By Topic

Advanced Methods and Algorithms for Biological Networks Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
El-Samad, H. ; California Inst. for Quantitative Biomed. Res., California Univ., San Francisco, CA, USA ; Prajna, S. ; Papachristodoulou, A. ; Doyle, John
more authors

Modeling and analysis of complex biological networks presents a number of mathematical challenges. For the models to be useful from a biological standpoint, they must be systematically compared with data. Robustness is a key to biological understanding and proper feedback to guide experiments,including both the deterministic stability and performance properties of models in the presence of parametric uncertainties and their stochastic behavior in the presence of noise. In this paper, we present mathematical and algorithmic tools to address such questions for models that may be nonlinear, hybrid,and stochastic. These tools are rooted in solid mathematical theories, primarily from robust control and dynamical systems, but with important recent developments. They also have the potential for great practical relevance, which we explore through a series of biologically motivated examples.

Published in:

Proceedings of the IEEE  (Volume:94 ,  Issue: 4 )