By Topic

TOA estimation for IR-UWB systems with different transceiver types

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guvenc, I. ; Dept. of Electr. Eng., Univ. of South Florida, Tampa, FL, USA ; Sahinoglu, Z. ; Orlik, P.V.

In this paper, performances of stored-reference, transmitted-reference (TR), and energy-detection (ED)-based time-of-arrival estimation techniques are analyzed for impulse-radio ultra-wideband (IR-UWB) systems at sub-Nyquist sampling rates. First, an additive white Gaussian noise channel is considered to emphasize certain fundamental issues related to these different transceivers. In particular, energy collection characteristics and decision statistics are presented. Probability of accurate peak detection is analyzed for each transceiver, and receiver operating characteristics for the leading edge are derived. Effects of number of pulses per symbol and number of averaging symbols are investigated in detail. Then, realistic multipath channels are addressed, and various maximum-likelihood estimation approaches are investigated. A new estimator that jointly exploits the noise statistics and power delay profile of the channel is proposed, and a Bayesian estimator that (ideally) gives a lower bound is analyzed. Simulation results show that while ED and TR have better energy collection capabilities at low-rate sampling, they suffer from distributing the energy over time.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 4 )