By Topic

Space-time selective RAKE receiver with finger selection strategies for UWB overlay communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-Hui Chang ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chong-Yung Chi ; Yu-Jung Chang

This paper proposes a space-time selective RAKE (SRAKE) receiver with maximum signal-to-interference-plus-noise ratio (MSINR) for direct-sequence ultra-wideband (UWB) communications in the presence of narrowband interference (NBI) and multiple-access interference. For effectively extracting a fixed number of the UWB signal components (fingers) from numerous resolvable paths, four finger selection strategies (FSSs) are considered for the proposed space-time SRAKE receiver, including the optimum FSS (with MSINR), which is not very computationally feasible, and three feasible FSSs: an energy-based FSS (EB-FSS), a constrained energy-based FSS (CEB-FSS), and a hybrid energy-based FSS, which is also a combination of the EB-FSS and CEB-FSS. Through a performance analysis, we show that the performance of the proposed receiver in the presence of NBI not only depends on the power ratio, bandwidth ratio, and relative spectrum location of NBI with respect to the UWB signal, but also on the FSS used. Some simulation results are then presented to show that the proposed space-time MSINR-SRAKE receiver with the preceding FSSs used can provide a larger system capacity and better immunity to strong NBI than the existing time-only SRAKE receivers and space-time SRAKE receivers.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 4 )