By Topic

Power and efficiency enhancement of 3G multicarrier amplifiers using digital signal processing with experimental validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Helaoui ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; S. Boumaiza ; A. Ghazel ; F. M. Ghannouchi

This paper proposes a digital signal-processing-based approach suitable for the performance optimization of third-generation (3G) amplifiers in terms of spectrum and power. A peak-to-average power ratio (PAPR) reduction method, which is coding and modulation independent, based on peak clipping and digital filtering techniques, is proposed. Moreover, the multibranch memory polynomial pre-distorter identified with an optimized recursive least square technique was efficiently implemented in a digital signal processor. The cascade of the proposed PAPR reduction technique with the memory pre-distorter results in a substantial enhancement of the power amplifier (PA) output linear power and efficiency, while still meeting the 3G partnership project standard requirements. An experimental validation carried out on a 90-W laterally diffused metal-oxide-semiconductor PA, which was fed with a wide-band code-division multiple-access signal, led to a 4-dB rise in output mean linear power accompanied with 60% increase in its power-added efficiency.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 4 )