By Topic

Spatial admittance selection conditions for frictionless force-guided assembly of polyhedral parts in single principal contact

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuguang Huang ; Dept. of Mech. & Ind. Eng., Marquette Univ., Milwaukee, WI, USA ; Schimmels, J.M.

By judiciously selecting the admittance of a manipulator, the forces of contact that occur during assembly can be used to guide the parts to proper positioning. This paper identifies conditions for selecting the appropriate spatial admittance to achieve reliable force-guided assembly of polyhedral parts for cases in which a single feature (vertex, edge, or face) of one part contacts a single feature of the other, i.e., all single principal contact cases. These conditions ensure that the motion that results from frictionless contact always instantaneously reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reducing conditions at a finite number of contact configurations, then the admittance will also satisfy the conditions at all intermediate configurations.

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 2 )